1 Stored Procedures

1.1 Stored Procedure 1

DELIMITER $$
CREATE PROCEDURE ‘prReservationRange’
(IN customernum INTEGER, IN firstdate DATE, IN seconddate DATE,
OUT reservationquant INTEGER, OUT itemcount INTEGER)
BEGIN
DECLARE switch DATE;
IF firstdate > seconddate THEN
SET switch = seconddate;
SET seconddate = firstdate;
SET firstdate = switch;
END IF;
SELECT COUNT (RESERVATION_NUM) INTO reservationquant FROM Reservation
WHERE Customer_Num = customernum AND
Reservation_Date BETWEEN firstdate AND seconddate;
SELECT SUM (QUANTITY) INTO itemcount FROM Reservation AS r
INNER JOIN Reservation_TItem AS i1 ON (r.Reservation_Num = i.Reservation_Num)
WHERE CUSTOMER_NUM = customernum AND
Reservation_Date BETWEEN firstdate AND seconddate;
ENDSS
DELIMITER ;

1.1.1 example 1

CALL ‘prReservationRange‘(l, ’2017-03-09’, ’2017-01-05", @numberofreservations, @numOflItems);
SELECT @numberofreservations, @numOfItems;

1 3 7

1.1.2 example 2

CALL ‘prReservationRange‘(l, ’2017-05-09’, ’'2017-01-05’, @numberofreservations, @numOflItems);
SELECT @numberofreservations, @numOfItems;

1 3 7

1.2 Stored Procedure 2

DELIMITER $$
CREATE PROCEDURE ‘prRiskAssessment®
(IN customernum INTEGER, OUT rentalrisk VARCHAR(11)
BEGIN
DECLARE reports integer;

SELECT COUNT (PROBLEM_DESCRIPTION) INTO reports FROM Rental_ History
WHERE Customer_Num = customernum AND
#We are assuming that there exist entries in rental_history that are NOT problem rentals,
and that only those with entries in the problem description would be problem rentals.
If that is not the case, the following line can be removed:
Problem Description IS NOT NULL AND
Rental_Date BETWEEN ’2016-01-01’ AND ’2016-12-31’;
IF reports > 5 THEN
SET rentalrisk = 'High-Risk’;
ELSEIF reports > 2 AND reports < 6 THEN

SET rentalrisk = ’'Medium-Risk’;
ELSE
SET rentalrisk = ’'Low-Risk’;
END IF;
ENDSS
DELIMITER ;

1.2.1 example 1

CALL ‘prRiskAssessment(’3’,Q@risklevel);
SELECT (@risklevel;

@risklevel
Medium-Risk

1.2.2 example 1

CALL ‘prRiskAssessment(’1’,Q@risklevel);
SELECT (@risklevel;

@risklevel
Low-Risk

1.3 Stored Procedure 3

DELIMITER $$

CREATE PROCEDURE isReorderNecessary () #(IN rowID int)
BEGIN #We assume that Reorder_gty is a trigger quantity and that equality triggers a reorder.
UPDATE Equipment_Type SET Reorder_Necessary = (Inventory_count <= Reorder_qgty);

#To update a specific row add the following:

#WHERE Equipment_type_code = rowID AND Inventory_count < Reorder_gty;
END $$
DELIMITER ;

1.3.1 example 1

CALL ‘isReorderNecessary‘();
SELECT * FROM Equipment_Type;

Equipment_type_code Equipment_type_description Equipment_type_rental_charge Damage_deposit Inventory _count Reorder_qty Reorder Necessary
1 1 Canoe 35.00 400.00 1] 0
2 2 Sea Kayak Solo 40.00 600.00 3 2 0
3 3 W.W.Kayak 30.00 400.00 1 o 0
4 4 Sit-On-Top Kayak 30.00 400.00 2 2 1
5 &5 Paddle Raft 30.00 400.00 o 1 1
6 6 Oar Raft 60.00 400.00 2 1 0
7 7 Duckie 35.00 400.00 1 o 0
8 8 Sea Kayak Tandem 60.00 600.00 1 0 0

1.3.2 example 2

UPDATE Equipment_Type SET Reorder_ gty = 2
WHERE Equipment_type_code = 1;

CALL ‘isReorderNecessary‘();
SELECT » FROM Equipment_Type;

Equipment_type_code Equipment_type_description Equipment_type_rental_charge Damage_deposit | Inventory_count Reorder_qty Reorder_Necessary
1 1 Canoe 35.00 400.00 1 2 1
2 2 Sea Kayak Solo 40.00 600.00 3 2 0
a 3 W.W.Kayak 30.00 400.00 1 0 0
4 4 Sit-On-Top Kayak 30.00 400.00 2 2 1
5 5 Paddle Raft 30.00 400.00 0 1 1
6 6 Qar Raft 60.00 400.00 2 1 0
77 Duckie 35.00 400.00 1 0 0
8 8 Sea Kayak Tandem 60.00 600.00 1 0 0

2 Full Code Listing

DROP DATABASE TetonWhitewater_2;
CREATE DATABASE TetonWhitewater_2;
USE TetonWhitewater_2;

#use backticks ' around table names that are collisions
#####44### TABLE DEFINITIONS ##H#######

CREATE TABLE Customer
(

Customer_num INT NOT NULL UNIQUE AUTO_INCREMENT,
C_name VARCHAR (35) NOT NULL,

C_street VARCHAR (40) NOT NULL,

C_city VARCHAR (60) NOT NULL,

C_state VARCHAR (2) NOT NULL,

C_zip INT NOT NULL,

C_telephone VARCHAR (20) NOT NULL,

C_email VARCHAR (40) ,

PRIMARY KEY (Customer_num)
)i

CREATE TABLE Rental_History
(

Customer_num INT NOT NULL,

Rental_date DATETIME NOT NULL DEFAULT CURRENT_ TIMESTAMP,
Problem_description TEXT,

Amount_owed DECIMAL (10,2),

PRIMARY KEY (Customer_num, Rental_date)
) i

CREATE TABLE Reservation
(

Reservation_num INT NOT NULL UNIQUE AUTO_INCREMENT,
Reservation_date DATETIME NOT NULL DEFAULT CURRENT TIMESTAMP,
Reservation_pickup_date DATE NOT NULL,

Reservation_return_date DATE NOT NULL,

Reservation_deposit_amount DECIMAL (10,2) NOT NULL,

Customer_num INT NOT NULL, #FOREIGN KEY

PRIMARY KEY (Reservation_num)
) i

CREATE TABLE Reservation_Item (

Reservation_num INT NOT NULL,
Equipment_type_code INT NOT NULL,
Quantity INT NOT NULL DEFAULT 0, #Probably do not need the default, but I

— put it anyway
PRIMARY KEY (Reservation_num, Equipment_type_code) #Not sure how to handle keys for composite
— entities

) i

CREATE TABLE Rental_Contract
(

Contract_num INT NOT NULL UNIQUE AUTO_INCREMENT,
Pickup_date DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP,
Scheduled_return_date DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP,
Actual_return_date DATETIME,

Retained_deposit DECIMAL (10,2),

Customer_num INT NOT NULL, #Foreign Key

PRIMARY KEY (Contract_num)
)i

CREATE TABLE Rental_TItem (
Contract_num INT NOT NULL,
Equipment_1ID INT NOT NULL,

Rental_item_charge DECIMAL (10, 2) NOT NULL,
Rental_item_deposit_amount DECIMAL (10,2) NOT NULL,
PRIMARY KEY (Contract_num, Equipment_ID)

)i

CREATE TABLE Equipment
(

Equipment_1ID INT UNIQUE AUTO_INCREMENT, #Does this need to be UNIQUE?
Equipment_Status VARCHAR (10) NOT NULL,

#possible make equipment_status enum (NEW,USED, MINOR_DAMAGE, MAJOR_DAMAGE, UNUSABLE) ?
Equipment_rental_count INT NOT NULL,

Original_cost INT NOT NULL, #Do we need this to be NOT NULL #J# I Don’t think so
Equipment_type_code INT NOT NULL, #Foreign Key

PRIMARY KEY (Equipment_1ID)
)i

CREATE TABLE Equipment_Type

(
Equipment_type_code INT UNIQUE AUTO_INCREMENT,

Equipment_type_description TEXT NOT NULL, #Do we need this to be NOT NULL
Equipment_type_rental charge DECIMAL (10,2) NOT NULL,

Damage_deposit DECIMAL (10, 2) NOT NULL,
Inventory_count INT NOT NULL,
Reorder_gty INT UNSIGNED NOT NULL,

PRIMARY KEY (Equipment_type_code)
) i

CREATE TABLE Equipped_With
(

Equipment_type_code INT NOT NULL,
Accessory_code INT NOT NULL,
Quantity INT NOT NULL,

PRIMARY KEY (Equipment_type_code, Accessory_code)
)i

CREATE TABLE Accessory
(

Accessory_code INT UNIQUE AUTO_INCREMENT,

Accessory_description TEXT NOT NULL, #Do we need this to be NOT NULL #J#This is the name
— of the object

Replacement_cost DECIMAL (9,2) NOT NULL,

Accessory_Inventory_Count INT NOT NULL,

Accessory_reorder_qgty INT UNSIGNED NOT NULL,

PRIMARY KEY (Accessory_code)
) i

CREATE TABLE ‘Order‘' #How do we handle this where it wants to interpret Order as an SQL command?
(

Order_num INT AUTO_INCREMENT,

Order_date DATETIME NOT NULL DEFAULT CURRENT_TIMESTAMP,
Order_date_received DATETIME, #Null if it has not been received yet
Supplier_num INT NOT NULL, #Foreign Key

PRIMARY KEY (Order_num)
) i

CREATE TABLE Line_Item_Equipment
(

Ord_num INT NOT NULL,
Equipment_type_code INT NOT NULL,
E_order_item gty INT UNSIGNED NOT NULL,
E_order_item_price DECIMAL (10, 2) NOT NULL,

PRIMARY KEY (Ord_num, Equipment_type_code)
) i

CREATE TABLE Line_Item_Accessory

(
Ord_num INT NOT NULL,
Accessory_code INT NOT NULL,

A_order_item_qgty INT UNSIGNED NOT NULL,
A_order_item_price DECIMAL (10,2) NOT NULL,
PRIMARY KEY (Ord_Num, Accessory_code)

)i

CREATE TABLE Supplier
(

Supplier_num INT AUTO_INCREMENT,

S_name VARCHAR (60) NOT NULL,

S_addr VARCHAR (255) NOT NULL,

S_city VARCHAR (60) NOT NULL,

S_state VARCHAR (2), #Do we need to specify the length? Why not string? Or
<~ since we don’t know if it’s a 2-letter

S_zip INT NOT NULL,

S_phone VARCHAR (20) ,

S_fax VARCHAR (20) ,

S_contact VARCHAR (60) NOT NULL,

S_email VARCHAR (255) ,

#Are all of these require or can we make some of them null? #J# I believe most are not required
—

PRIMARY KEY (Supplier_num)
)i

e d A A FOREIGN KEYS #4444 4t 4 9 4 4F

ALTER TABLE Reservation

ADD FOREIGN KEY (CUSTOMER_NUM)
REFERENCES Customer (CUSTOMER_NUM)
ON UPDATE CASCADE;

ALTER TABLE Rental_Contract
ADD CONSTRAINT FOREIGN KEY (CUSTOMER_NUM) REFERENCES Customer (CUSTOMER_NUM)
ON UPDATE CASCADE;

ALTER TABLE Equipment

ADD CONSTRAINT FOREIGN KEY (EQUIPMENT_TYPE_CODE)
REFERENCES Equipment_Type (EQUIPMENT_TYPE_CODE)
ON UPDATE CASCADE;

ALTER TABLE ‘Order’

ADD CONSTRAINT FOREIGN KEY (SUPPLIER_NUM)
REFERENCES Supplier (SUPPLIER_NUM)
On UPDATE CASCADE;

##From my understanding, we use On Update Cascade 1in all the tables

where the foreign keys originate from, to cascade to the tables with foreign keys
—— ALTER TABLE Customer

—— ADD (ON UPDATE CASCADE) ;

—— ALTER TABLE Equipment_Type
—— ADD CONSTRAINT ON UPDATE CASCADE;

-— ALTER TABLE Supplier
—— ADD (ON UPDATE CASCADE) ;

#H#4H#HH#E SAMPLE DATA ######H4#4H
INSERT INTO Customer (C_name, C_street, C_city, C_state, C_zip, C_telephone, C_email) VALUES
(" Jonathon Boden’, 7786 New Saddle Drive’, ’'Ottumwa’, ’IA’, 52501,’202-555-0119", '

< alloneword@gmail.com’),

(" Sampson Walleye’, 1 High Noon Avenue’, ’Albany’, ’'NY’, 12203, ’ (283) 843-9772", '
— falldownfred@yahoo.com’),
("Walter Smith’, 78785 Windfall St.’,’Whitehall’, ’'PA’, 18052, ' (271) 844-9365", '
— frozenkittyfritters@aol.com’),
("Allonar Blake’, ’1 N. Cactus Ave.’,’Green Bay’, 'WI’, 54302, ' (663) 646-4717", '
— fallenlondon@failbetter.com’),
(" Jimmy Dean’, ’1 High Noon Avenue’, ’Albany’, ’'NY’, 12203, ' (722) 279-7386', ’'meboy@gmail.com’);

INSERT INTO Rental_History (Customer_num, Rental_date, Problem_description, Amount_owed) VALUES
(3,72016-02-01", 'Damaged’,35.00),

(3,72016-02-07",’Damaged’ ,35.00),

(2,72017-03-14’ ,NULL,210.00),

(4,72017-03-29’ ,NULL, 360.00),

(3,72016-04-05", ' Damaged’ ,35.00) ;

INSERT INTO Reservation (Reservation_date, Reservation_pickup_date, Reservation_return_date,
<~ Reservation_deposit_amount, Customer_num) VALUES

("2017-01-05", "2017-01-28", "2017-02-02", 500.00, 1),

(r2017-02-07", ’2017-02-09", 72017-02-13", 275.00, 1),

("2017-02-17", "2017-03-14",72017-03-14", 400.00, 2),

(2017-03-07", ’2017-03-29’,72017-04-10", 350.00, 3),

("2017-03-09", "2017-04-05", "2017-04-06", 425.00, 4),

("2017-03-09", ’2017-04-05", '2017-04-06", 425.00, 1),

("2017-03-08", "2017-04-06", "2017-04-07", 425.00, 5);

INSERT INTO Reservation_Item (Reservation_num, Equipment_type_code, Quantity) VALUES
(1,1,1),
(2,2,1),
(3,1,1),
(4,4,1),
(5,3,1),
(1,2,5);

INSERT INTO Rental_Contract (Pickup_date, Scheduled_return_date, Actual_return_date,
< Retained_deposit, Customer_num) VALUES
(2017-02-01T13:10:00", "2017-02-02T13:09:59’, ’'2017-02-02T9:11:00", O, 1),
(72017-02-09T8:01:00", ’2017-02-13T8:00:59’, null, null, 1), #purposely included null values as
— overdue
("2017-03-14T15:25:00","2017-03-14T15:24:59", '2017-03-15T8:10:00", 200.00, 2),
("2017-03-29T16:45:00","2017-04-10T16:44:59", '2017-04-10T16:45:01", 175.00, 3),
("2017-04-05T9:12:00", "2017-04-06T9:11:59”, ’2017-04-06T9:11:59’, 50, 4),
("2017-05-05T9:12:00", "2017-05-06T9:11:59’, ’2017-05-06T9:11:59’, 100, 1),
("2017-05-05T9:12:00", "2017-05-06T9:11:59", ’2017-05-06T9:11:59’, 100, 4);

INSERT INTO Rental_TItem (Contract_num, Equipment_ID, Rental_item_charge,
— Rental_item_deposit_amount) VALUES

(1,1,35.00,400.00),
(2,2,210.00,40.00),
(3,1,35.00,400.00),
(4,4,360.00,400.00),
(5,3,35.00,400.00),
(6,1,35.00,400.00),
(7,7,35.00,400.00)

’

INSERT INTO Equipment_Type (Equipment_type_description, Equipment_type_rental_charge,
< Damage_deposit, Inventory_count, Reorder_qgty) VALUES

(" Canoce’, 35.00, 400.00, 1, 0),

(" Sea Kayak Solo’, 40.00, 600.00, 3, 2),

("W.Ww.Kayak’, 30.00, 400.00, 1, 0),

("sit-On-Top Kayak’, 30.00, 400.00, 2, 2),

("Paddle Raft’, 30.00, 400.00, 0, 1),

("0ar Raft’, 60.00, 400.00, 2, 1),

("Duckie’, 35.00, 400.00, 1, 0),

(" Sea Kayak Tandem’, 60.00, 600.00, 1, 0);

INSERT INTO Equipment (Equipment_status, Equipment_rental_ count, Original_cost,
— Equipment_type_code) VALUES

("In Stock’, 3, 800.00, 1),

(" rented’, 7, 1200.00, 2),

("IN STOCK’, 1, 800.00, 1),

("In stock’, 15, 1200, 3), #purposely included no decimals on price

("sold’, 15, 1200, 7),

(' Damaged’, 3, 1200, 4),

("Rented’, 3, 1200, 2);

INSERT INTO Equipped_With (Equipment_type_code, Accessory_code, Quantity) VALUES
(1,1,2),
(1,2,1),
(2,1,1),
(2,2,1),
(3,2,1);
#this table coould do with a lot more entries

INSERT INTO Accessory (Accessory_description, Replacement_cost, Accessory_inventory_count,
<~ Accessory_reorder_gty) VALUES

("Lifejacket’, 35.00, 40, 20),

("Paddle’, 40.00, 60, 30),

("Roof Pad’, 30.00, 4, 2),

("Tie down’, 3.00, 40, 25),

("Bail Bucket’, 5.00, 40, 10),

("Helmet’, 6.00, 60, 30);

INSERT INTO Supplier (S_name,S_addr,S_city,S_State, S_zip,S_phone,S_fax,S_contact,S_email) VALUES
("Dave’s Kayak Factory","4586 Sage St.","Kansas City","NB", 96587, " (923) 546-9874"," (813) 825-1254
<~ ","Dave Davidson", "dave@supermail.net"),
("The Whitewater Emporium","1235 Smith St.","Nantucket","TN", 64852, " (325) 625-6454"," (642)
— 363-4141","Will williamson","Will@gmail.com"),
("Fat Pigeon Products","879 SE. Cherry Hill Dr.","Holbrook","NY",11741," (271) 844-9365"," (271)
— 844-9365x63", "Kama Jozafat","jokamalfatpidgeon.com"),
("Alpha Moose Kayak","9025 University St.","Emporia", "KS", 64852," (663) 646-4717",NULL, "Surya
< Torsten", "Torsten@amooseyak.com"), #Contact number left null
("Turtle Shoe Rafts","70 Glenholme Drive", "Bozeman","MT",96587," (457) 213-9438"," (457) 825-1254",
—» "Carlos Genadi", "Carlos@TurtleStew.net");

INSERT INTO ‘Order‘' (Order_date,Order_date_received, Supplier_num) VALUES
("2014-12-05","2014-12-13",3),

("2015-05-10","2015-05-20",3),

("2016-09-07",72016-09-08",1),

("2017-12-12' ,NULL, 4),

(72017-11-18’" ,NULL, 2) ;

INSERT INTO Line_Item_Equipment (Ord_num, Equipment_type_code, E_order_item_gty,
<~ E_order_item_price) VALUES

(1,2,5,4000),

(2,2,3,3600),

(3,5,1,1200),

(4,5,1,1200),

(5,1,2,1600);

INSERT INTO Line_Item_Accessory (Ord_num, Accessory_code, A_order_item_gty, A_order_item_price)
< VALUES

(1,2,10,400),

(2,1,20,700),

(3,4,15,45),

(1,3,5,150),

(2,6,8,54);

Select * From Accessory;
Select » From Customer;

Select From Equipment;

Select From Equipment_Type;
Select From Equipped_With;
Select From Line_TItem_Accessory;
Select From Line_TItem_ Equipment;
Select From ‘Order‘;

Select From Rental_History;
Select From Rental_ Ttem;
Select From Reservation;
Select From Reservation_Item;

*

*

*

*

*

*

Select » From Rental_Contract;
*

*

*

*

Select » From Supplier;

#1 List the equipment ID, due date, and status for all equipment that is currently rented.
SELECT eq.Equipment_ID, rc.Scheduled_return_date AS 'Due Date/Time’, eq.Equipment_Status as ’
— Status’
From Rental_ Item AS ri INNER JOIN Equipment AS eq
ON (eq.Equipment_ID = ri.Equipment_1ID)
INNER JOIN Rental_Contract AS rc
ON (ri.Contract_num = rc.Contract_num)
WHERE equipment_status LIKE ’'rented’;

#2 List all equipment types whose description ends with "kayak."
SELECT Equipment_type_Code, Equipment_type_Description AS ’Description’
FROM Equipment_Type
WHERE Equipment_type_Description LIKE ’S$kayak’;

#3 List the customer name, equipment type, equipment id, and scheduled return date for all
— equipment rented (picked up) on February 9, 2017.
SELECT C.C_Name, et.Equipment_Type_Description, eqg.Equipment_ID, rc.Scheduled_Return_Date
FROM Rental_Contract AS rc INNER JOIN Customer AS C
ON C.Customer_Num = rc.Customer_Num
INNER JOIN Rental_Ttem AS ri
ON (rc.Contract_Num = ri.Contract_Num)
INNER JOIN Equipment AS eqg
ON (ri.Equipment_ID = eq.Equipment_1ID)
INNER JOIN Equipment_Type AS et
ON (eg.equipment_type_code = et.Equipment_type_code)
WHERE rc.Pickup_date LIKE '2017-02-09%’;

#4 List all rental incident reports (customer id, customer name, date, problem description,
— amount owed) associated with a specified customer.
SELECT «
FROM Rental_History
WHERE Customer_num = 1; ############## This number used as sample for ’specified customer’,
<~ this will eventually be a stored procedure

#5 a) List each equipment type and the total number of rentals from that category.
Select et.Equipment_type_description, SUM(eq.Equipment_rental_count) AS ’'Total Rental Count’
From Equipment_Type AS et INNER JOIN Equipment AS eq
ON (et.Equipment_Type_Code = eq.Equipment_Type_Code)
GROUP BY et .EQUIPMENT_TYPE_CODE;

#5 b) List the type of equipment and total number of rentals for the equipment type that was
— rented most often.

SELECT et .Equipment_type_description AS DESCRIPTION, SUM(eq.Equipment_rental count) AS ‘Most Used
o
From Equipment_Type AS et INNER JOIN Equipment AS eq
ON (et.Equipment_Type_Code = eq.Equipment_Type_Code)
GROUP BY et.Equipment_Type_Code
HAVING ‘Most Used' >= ALL (SELECT SUM(eq.Equipment_rental_count)
From Equipment_Type AS et INNER JOIN Equipment AS eq
ON (et.Equipment_Type_Code = eq.Equipment_Type_Code)
GROUP BY et.Equipment_Type_Code) ;

#6 List all equipment types and number of suppliers for those equipment types
that were supplied by multiple suppliers.
SELECT Equipment_Type.Equipment_Type_Description AS ’'Equipment Type’,
COUNT (DISTINCT ‘Order‘.Supplier_num) AS ’'Number of Different Suppliers’
FROM Equipment_Type INNER JOIN Line_Item_ Equipment
ON (Equipment_Type.Equipment_type_code = Line_Item_Equipment.Equipment_type_code)
INNER JOIN ‘Order‘
ON (Line_Item_Equipment.Ord_num = ‘Order‘.Order_num)
GROUP BY Equipment_Type.Equipment_Type_Code
HAVING COUNT (DISTINCT ‘Order‘.Supplier_Num) > 1;

#7 Given an equipment type (e.g., Canoe), indicate the description and the number of items that

are available to be rented (in stock).

SELECT Equipment_Type.Equipment_type_description AS ’'EQUIPMENT TYPE’,
COUNT (Equipment .Equipment_Status) AS ’Number In Stock’
FROM Equipment_Type INNER JOIN Equipment ON (Equipment_Type.Equipment_Type_Code = Equipment.

— Equipment_Type_Code)

WHERE Equipment.Equipment_Status LIKE ’In%’

GROUP BY Equipment_Type.Equipment_Type_Description

HAVING Equipment_Type.Equipment_Type_ Description LIKE 'CANOE’; #THIS IS ADDED BECAUSE OF

— THE ’'GIVEN A TYPE’, EVENTUALLY THIS WILL BE A VARIABLE PASSED TO A STORED PROCEDURE.

#8 List the equipment id, equipment type, and status of all rentals that are overdue.
SELECT et.Equipment_type_code, et.Equipment_type_description, e.Equipment_Status FROM
— Rental_Contract AS rc
INNER JOIN Rental_TItem AS ri ON (rc.Contract_num = ri.Contract_num)
INNER JOIN Equipment AS e ON (ri.Equipment_ID = e.Equipment_ID)
INNER JOIN Equipment_Type AS et ON (et.Equipment_type_code = e.Equipment_type_code)
WHERE rc.Scheduled_return_date < CURRENT_DATE AND rc.Actual_return_date IS NULL;
#Note, that this search looks for rentals that are overdue, not just those labeled as "Overdue".

#9 List the total amount owed for all incident reports in the rental history table
SELECT SUM (Amount_owed) FROM Rental_History;

10 Count the number of reservations that are scheduled to be picked up during the weekend of
— January 28 & 29, 2017

SELECT COUNT (Reservation_num) FROM Reservation

WHERE Reservation_pickup_date = 72017-1-28’ OR Reservation_pickup_date = 72017-1-29';

11 Show the equipment type id, equipment type description, and average days rented for all
— types of equipment on a type-by-type basis

SELECT et.Equipment_type_code, et.Equipment_type_description, ROUND (AVG (DATEDIFF (rc.
<~ Actual_return_date,rc.Pickup_date)),1l) as ’"Average Days Rented’

FROM Rental_Contract AS rc

INNER JOIN Rental_TItem AS ri ON (rc.Contract_num = ri.Contract_num)

INNER JOIN Equipment AS e ON (ri.Equipment_ID = e.Equipment_1ID)

INNER JOIN Equipment_Type AS et ON (et.Equipment_type_code = e.Equipment_type_code)

GROUP BY et.Equipment_type_code;

#Using Actual_return_date instead of Scheduled return date ignores any items not yet returned,

#but provides a more accurate estimate of days rented, as opposed to days planned rented.

#12 List supplier number and supplier name for all suppliers for which there are no current
< orders. Sort the list in ascending order by supplier name.

SELECT s.Supplier_num, s.S_name FROM Supplier AS s

LEFT JOIN ‘Order' as o ON (o.Supplier_num = s.Supplier_num)

WHERE o.Order_num IS NULL

ORDER BY s.S_name ASC;

#This is assuming that the phrase ’'No Current Orders’ implies there is no record of an order
— being made

#13 - (Needs GROUP BY and HAVING) "Write a query that provides the number of times a deposit was
— withheld, the total amount withheld, and the associated customer number for each customer
<~ that has had a deposit withheld more than once."

SELECT Customer_Num, COUNT (Retained_Deposit) AS ’'Number of Times Withheld’, SUM(Retained_deposit
<~) AS ’'Total of Withholdings’

FROM Rental_Contract
WHERE Retained_Deposit > 0
GROUP BY Customer_Num
HAVING COUNT (Retained_Deposit) > 1;

#14 - (Join AT LEAST three tables) "Write a query that lists each type of equipment that has been
<~ ordered with the name of the suppliers whom we have ordered that product from in the past
N
SELECT DISTINCT Equipment_Type.Equipment_Type_Description AS ’'Equipment Type’, Supplier.S_name AS
<~ ’Suppliers’
FROM Equipment_Type INNER JOIN Line_Item_Equipment USING (Equipment_Type_Code)
INNER JOIN ‘Order' ON (Line_Item_Equipment.Ord_num = ‘Order‘.Order_Num)

10

INNER JOIN Supplier USING (Supplier_num)
ORDER BY Equipment_Type.Equipment_Type_Code;

#15 - (Outer Join) "Write a query that lists the customer number and reservation number for all
< reservations that do not have a matching rental on the declared pickup date, implying that
<~ they were not picked up as planned"

SELECT Reservation.Reservation_num AS ’Reservation #',

Reservation.Customer_num AS ’'Made By Customer #’,
Reservation.Reservation_Pickup_Date AS ’'Was Not Picked Up On’
FROM Rental_Contract INNER JOIN
(SELECT DATE (Pickup.Pickup_Date) AS ’DATEONLY’, Pickup.Contract_Num AS ’ID’
FROM Rental_Contract AS Pickup) Pickup
ON Rental_Contract.Contract_Num = Pickup.ID
RIGHT JOIN Reservation
ON (Rental_Contract.Customer_Num = Reservation.Customer_num
AND Reservation.Reservation_Pickup_Date = Pickup.Dateonly)
WHERE Dateonly IS NULL
ORDER BY Reservation.Customer_num;

#STORED PROCEDURES

#1 Write a stored procedure that takes a customer number as well as two dates as input

parameters and returns two numbers as output parameters: 1) number of reservations

made by that customer between those two dates (both inclusive) and 2) total number of
items on those reservations.

your procedure should first check the two date values received from the user to determine
which one is greater than the other one and decide on which one should be considered

the start date of the period.

Also, write the code to test the procedure

H S H 3 3

DELIMITER $$
CREATE PROCEDURE ‘prReservationRange’
(IN customernum INTEGER, IN firstdate DATE, IN seconddate DATE,
OUT reservationquant INTEGER, OUT itemcount INTEGER)
BEGIN
DECLARE switch DATE;
IF firstdate > seconddate THEN
SET switch = seconddate;
SET seconddate = firstdate;
SET firstdate = switch;
END IF;
SELECT COUNT (RESERVATION_NUM) INTO reservationquant FROM Reservation
WHERE Customer_Num = customernum AND
Reservation_Date BETWEEN firstdate AND seconddate;
SELECT SUM (QUANTITY) INTO itemcount FROM Reservation AS r
INNER JOIN Reservation_Item AS i1 ON (r.Reservation_Num = i.Reservation_Num)
WHERE CUSTOMER_NUM = customernum AND
Reservation_Date BETWEEN firstdate AND seconddate;
ENDSS
DELIMITER ;

CALL ‘prReservationRange‘(l, ’2017-03-09’, ’2017-01-05", @numberofreservations, @numOflItems);
SELECT @numberofreservations, @numOflItems;

CALL ‘prReservationRange‘(l, ’2017-05-09’, ’2017-01-05", @numberofreservations, @numOfItems);
SELECT (@numberofreservations, @numOfItems;

#2 Write a stored procedure that takes a customer number as the input parameter and returns a

message (as the output parameter) that indicates whether the customer is High-risk ,
— Mediumrisk

or Low -risk . Also, write the code to test the procedure.

DELIMITER $$
CREATE PROCEDURE ‘prRiskAssessment’
(IN customernum INTEGER, OUT rentalrisk VARCHAR(11)
BEGIN
DECLARE reports integer;

11

SELECT COUNT (PROBLEM_DESCRIPTION) INTO reports FROM Rental_ History
WHERE Customer_Num = customernum AND
#We are assuming that there exist entries in rental_history that are NOT problem rentals,
and that only those with entries in the problem description would be problem rentals.
If that is not the case, the following line can be removed:
Problem Description IS NOT NULL AND
Rental_Date BETWEEN ’2016-01-01’ AND ’2016-12-31";
IF reports > 5 THEN
SET rentalrisk = 'High-Risk’;
ELSEIF reports > 2 AND reports < 6 THEN
SET rentalrisk = ’Medium-Risk’;
ELSE
SET rentalrisk = ’Low-Risk’;
END IF;
ENDSS
DELIMITER ;

CALL ‘prRiskAssessment‘(’3’,@risklevel);
SELECT (@risklevel;

CALL ‘prRiskAssessment(’1l’,Q@risklevel);

SELECT (@risklevel;

#3 Modify the Equipment_Type table to include a new Boolean attribute called

Reorder_necessary that will be set to true when an item needs to be reordered. The
attribute should default to false.

Since the default value may not be valid for all the data in your table, write a stored
procedure to set the value of the new Reorder_necessary attribute to its correct value.
If the Inventory_count is less than or equal to the Reorder_gty, then set the
Reorder_necessary value to true.

Otherwise, set the Reorder_necessary value to false.

Execute the procedure to reset the value.

= H o o 3

ALTER TABLE Equipment_Type
ADD COLUMN Reorder_Necessary bool default false; #Because it is a boolean, values are 0 or 1

DELIMITER $$

CREATE PROCEDURE isReorderNecessary () #(IN rowID int)
BEGIN #We assume that Reorder_gty is a trigger quantity and that equality triggers a reorder.
UPDATE Equipment_Type SET Reorder_Necessary = (Inventory_count <= Reorder_gty);

#To update a specific row add the following:

#WHERE Equipment_type_code = rowID AND Inventory_count < Reorder_gty;
END $S
DELIMITER ;

CALL ‘isReorderNecessary‘();
SELECT * FROM Equipment_Type;

UPDATE Equipment_Type SET Reorder_gty = 2
WHERE Equipment_type_code = 1;

CALL ‘isReorderNecessary'();
SELECT » FROM Equipment_Type;

12

